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One-dimensional Casimir effect perturbed by an external
field
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Espacials de Catalunya (IEEC), Edifici Nexus-112, c. Gran Capità 2-4, 08034 Barcelona, Spain

Received 30 January 1997

Abstract. We consider the problem of evaluating the Casimir effect by the mode-sum method
for a quantum field in a one-dimensional space, in the presence of two point-like boundaries of
Dirichlet type, and under the influence of a constant external field—which may be envisaged as
a classical gravitatory field near the surface of a planet or a classical electric field in the interior
of a flat capacitor. The case of infinitely separated points is also examined. Despite apparent
simplicity, the calculation exhibits rather non-trivial aspects. The possibility of an experimental
observation of these effects is considered.

1. Introduction

Some features of quantized fields can be studied in terms of the response of a vacuum to
external fields—electric or gravitatory. In [1] special attention was paid to the ground state
and vacuum polarization, in the presence of an external electric field, but relatively little
was said about the actual values of the vacuum energy which—as commented, for example,
in [2] by the same authors—can in principle be found using the mode-sum method. This, as
well as other evaluation techniques, are described in [3]. In the present work we point at the
possibility of numerically evaluating a quantity of this type by zeta-function regularization.
With the final aim of addressing the problem of the gravitational influence on the original
Casimir effect, we give here a first example based on a toy model, namely a neutral scalar
field in a (1+1)-dimensional spacetime, subject to Dirichlet boundary conditions and under
the effect of a static external field linearly entering the evolution equation. As observed in
[1], an example of this nature may indeed be useful for later investigation with a realistic
model. Being more precise, our system will differ from the one in [1] in that the field
discussed there was a charged one, while ours is not, and also in the linear (not quadratic)
way in which the potential is added to the field equation.

Relationships between gravity and the Casimir effect have been highlighted in other
contexts; for example, the authors of [4] found the contribution to the effective potential
generated by a single graviton loop on a background manifold of Kaluza–Klein type
M4× SN . A crucial element in these studies was the theory of harmonics on theN -sphere,
which yields Laplacian eigenvalues with relatively easy expressions, i.e. polynomials in the
relevant quantum numbers. Despite the simplicity of our own settings—Euclidean (1+ 1)-
dimensional spacetime and interaction just from an external source—this type of dependence
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no longer takes place. The eigenfrequencies happen to be solutions of transcendental
equations, turning the evaluation of the spectral zeta function into a serious issue.

After assigning reasonable values to the physical magnitudes of the problem, the final
numbers obtained indicate the interest of continuing the discussion with a more realistic
(although more difficult) situation. Hopefully, this might lead to the devising of some
experiment for distinguishing the cases of zero and non-zero external field. Also in
connection with this type of system, the problem of instabilities (and related issues such
as the Klein paradox [5]) coming from complex eigenvalues would be expected to appear
in the strong external field regime. Since in our system we keep this field relatively weak,
instabilities should not play any significant role (see, e.g., comments in [1]).

The calculation method to follow will be a variant of the one used in [6, 7], where
a given analytic continuation technique plus some numerical effort made the successful
application of the complete spectral zeta function possible for evaluating vacuum energies
in problems with spherical symmetry and non-polynomic spectrum. This approach rests on
ideas along the same lines of reasoning as in [8]. Particularly, the second of these studies
contains a proposal about the use of this analytic-continuation philosophy in the study of
the Hartle–Hawking wavefunction of the universe, thus bringing this type of thinking into
the realm of modern quantum cosmology. The development of one-loop approaches from
the analysis of boundary problems in this context (see, e.g., [9]) has proven to be a fruitful
ground for the application of zeta-function methods [10]. Similar ideas have been further
exploited with various aims in [11], on the underlying basis of the Seeley–De Witt series
for Laplacian operators.

2. Chargeless scalar field

A quantum scalar field under the influence of an external effective potential can be described
by means of an equation of the type

(�−m2+ V (x))8(t, x) = 0 (2.1)

where� is the one-dimensional d’Alembertian,� = (∂2/∂t2)− (∂2/∂x2). After separating
the time dependence of the solution, as8(t, x) = e−iωtφ(x), the equation forφ(x) reads

φ′′ + (ω2+m2− V (x))φ = 0. (2.2)

In view of the way it enters our field equation, thisV (x) may be interpreted—perhaps more
correctly—as the description of an object responsible forboundary semihardening[12],
rather than a potential in the ordinary sense (dimensionally speaking, it is the square of an
energy). Particularly, we will consider the linear formV (x) = Ex, having in mind, for
example,E = qε electric orE ∝ mg, of gravitational style. The simplifying assumption
m2 = 0 yields

φ′′ + (ω2− Ex)φ = 0. (2.3)

After making the variable change (for each value ofω)

yω = Ex − ω2

E2/3
= E1/3x − λω λω ≡ ω2

E2/3
(2.4)

the transformed equation is (callingyω = y again)

d2

d2y
φ − yφ = 0. (2.5)



One-dimensional Casimir effect 5395

Its general solution, written in terms of Bessel functions, has the form

φ(y) = y1/2[c1J1/3(
2
3(−y)3/2)+ c2J−1/3(

2
3(−y)3/2)] (2.6)

wherec1 andc2 are to be determined by the boundary conditions. An alternative possibility
is to note that, since (2.5) is the Airy equation, we may also express its general solution in
terms of Airy functionsφ(y) = c̄1Ai(y)+ c̄2Bi(y). The mathematical expressions simplify
greatly, but the degree of numerical difficulty is quite similar and the ensuing discussion
changes little. Furthermore, in the case that the potential enters the equation quadratically—
which is reviewed in the next section—the general solution involves Bessel functions of an
index different from 1/3 and the reduction to Airy functions no longer applies. We should
also bear in mind that eachy = yω depends onω.

2.1. Case of Dirichlet boundary conditions at x = 0 and x = L

In this first situation, we shall require vanishing conditions at the endpoints of a finite space
interval. In the language of [12], this amounts to adding the imposition ofhard boundary
conditions. By the change (2.4),x = 0 ⇒ yω = −λω, andx = L ⇒ yω = −(λω − L),
whereL ≡ E1/3L is dimensionless. Thus, the system to be solved is

φ(y = −λω) = 0 φ(y = −(λω − L)) = 0 (2.7)

with φ given by (2.6). If it has solutions other thanc1 = c2 = 0, thenλω must satisfy the
equality

J1/3(
2
3λ

3/2)J−1/3(
2
3(λ− L)3/2)− J−1/3(

2
3λ

3/2)J1/3(
2
3(λ− L)3/2) = 0. (2.8)

So as to avoid annoyances atλ = 0 andλ = L, we can better rephrase our problem to that
of finding the positive zeros of

fL(λ) ≡
J1/3(

2
3λ

3/2)

J−1/3(
2
3λ

3/2)
− J1/3(

2
3(λ− L)3/2)

J−1/3(
2
3(λ− L)3/2)

(2.9)

and, in order to look for the Casimir energy, we will use theω-eigenmode zeta function,
given by

ζω(s) =
∑
ω

ω−s = E−s/3ζλ
(
s

2

)
(2.10)

where theλ-zeta function is

ζλ(t) ≡
∑
λ

λ−t Ret > 1. (2.11)

Hence, the zeta-renormalized Casimir energy [13] is given by

EC = PPs→−1
µ

2
ζω/µ(s) = PPs→−1

µ

2
E−s/3ζλ/µ2

(
− s

2

)
= PPs→−1

µ

2

(
µ

E1/3

)s
ζλ

(
− s

2

)
(2.12)

µ denoting an arbitrary mass scale. In general, this quantity gives the amount of vacuum
energy per real degree of freedom of the field, while the total energy is obtained by
multiplying it by an adequate factor (e.g. two for a complex scalar field). Some aspects of
the relations between this and other forms of regularization are illustrated in [14–16]. As
we see, ats = −1, the argument ofζλ is−1/2. This is where we have to work, i.e. we will
have to find the analytic continuation ofζλ(t), initially defined by (2.11), to Ret = −1/2
(at least for points on the real axis).
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We start from the integral representation ofζλ(s)

ζλ(s) = s

2π i

∫
C

dz z−s−1 ln[fL(z)] Res > 1 (2.13)

with the contourC enclosing all the positive real zeros offL. Next, we seek an
adequate realization ofC convenient for numerically calculating the analytic continuation
to s = −1/2. For non-integerν, Jν(z) has a branch point atz = 0 with a cut from this
point to infinity in any direction. Looking a bit more closely at what happens around the
origin, we see that

J1/3(
2
3z

3/2)

J−1/3(
2
3z

3/2)
∼ 1

32/3

0(2/3)

0(4/3)
z

which is an entire function. Therefore, on the whole there are no cuts to worry about.
Our strategy will be based on the following. LetAL(z) denote the asymptotic behaviour

for large |z| (under whatever specific conditions) offL(z). We can write

ζλ(s) = s

2π i

{∫
C

dz z−s−1 ln

[
fL(z)

AL(z)

]
+
∫
C

dz z−s−1 ln[AL(z)]

}
. (2.14)

The advantages of this approach are, first, that sincefL(z)/AL(z) → 1 as |z| → ∞, the
first integral will have good properties. Second, if we are able to find anAL(z) without
zeros or poles insideC, the second integral will vanish and we may ignore it; however,
if AL(z) has zeros in the interior, they will have to be taken into account. We draw our
integration circuit so that the interior ofC is bounded by two arcs,|z| = ε and |z| = R

(with ε→ 0 andR→∞), and two radial lines, argz = π/3 and argz = −π/3.
Next we consider our choice ofAL(z). We get

fL(z) ∼ BL(z)
[

1+O
(

1

z3/2
,

1

(z − L)3/2, . . .
)]

BL(z) ≡
√

3
sin[2

3z
3/2− 2

3(z − L)3/2]

cos[23z
3/2+ 2

3(z − L)3/2+ π( 1
3 − 1

2)] + cos[23z
3/2− 2

3(z − L)3/2]
.

(2.15)

Hence, one feels tempted to takeAL(z) = BL(z) since, for|z| � 1,∫
dz z−s−1 ln

[
fL(z)

AL(z)

]
=
∫

dz z−s−1 ln

[
1+O

(
1

z3/2

)]
= O

(∫
dz z−s−1 1

z3/2

)
(2.16)

which, ats = −1/2, is integrable forz →∞ without problems. However, forBL(z) as it
stands, the calculation of its zeros on the real axis is complicated. We now try to further
simplify the expression by looking at what happens on the straight tracks.

In reality, for reals, the straight track with arg|z| = −π/3 gives the complex conjugate
to that for arg|z| = π/3, with opposite sign. The result of their sum will then be 2i times
the imaginary part of the latter. In fact we may note that the asymptotic behaviour of
AL on the part where arg|z| = π/3 (sayz = eiπ/3x†), reduces, up to exponentially small
contributions, to the simpler expression

BL(e
iπ/3x) ∼

√
3 eiπ/3(e−2 2

3 (x−L̃)3/2 − e−2 2
3x

3/2
)

=
√

3 eiπ/3 e−
4
3x

3/2
(e2L̃x1/2 − 1)

[
1− 1

2

L̃2

x1/2
+O

(
L̃2

x1/2
e−2L̃x1/2

, . . .

)]
(2.17)

† Note that thisx is just a parameter for describing a given line in the complex plane, and has nothing to do with
the initial x in our one-dimensional configuration space.
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where

L̃ ≡ e−iπ/3L. (2.18)

Then, we adopt

AL(e
iπ/3x) =

√
3 eiπ/3 e−

4
3x

3/2
(e2L̃x1/2 − 1) (2.19)

and extend it by considering

AL(z) =
√

3 eiπ/3 ei 4
3z

3/2
(e−i2Lz1/2 − 1). (2.20)

As a result of (2.15) to (2.19), we get

ln[LL(x)] ≡ ln

[
fL(e

iπ/3x)

AL(eiπ/3x)

]
= ln

[
1− 1

2

L̃2

x1/2
+ · · ·

]
= − L̃

2

2

1

x1/2
+ higher-order terms

(2.21)

where the higher-order terms cause no problem on integrating them. The leading part,
however, gives rise to∫ ∞

dx x−s−1 ln[LL(x)] ∼ −
L̃2

2

∫ ∞
dx x−s−1 1

x1/2
(2.22)

i.e. a logarithmic divergence ats = −1/2 when the upper integration bound goes to
infinity. We shall parametrize this divergence by performing a subtraction in the integrand
and separately adding the subtracted part. In view of (2.22), the subtracted piece will be
−(L̃2/2)1/(1+x2)1/4, which has the same behaviour asx →∞ and in addition is integrable
aroundx = 0. After integrating,∫ ∞

0
dx x−s−1 ln[LL(x)] = JL(s)−

L̃2

4
B

(
− s

2
,
s + 1/2

2

)
JL(s) ≡

∫ ∞
0

dx x−s−1

{
ln[LL(x)] +

L̃2

2

1

(1+ x2)1/4

} (2.23)

where the main point is that nowJL(s) is a finite integral ats = −1/2.
The zeros ofAL(z) on the positive real axis will be thex values satisfying e−i2Lx1/2−1=

0, i.e.x = xn = (πn/L)2, n = 1, 2, 3, . . .. As a result, the contribution of the second integral
in (2.14), whenC encloses thewhole positive real axis, is

s

2π i

∫
C

dz z−s−1 ln[AL(z)] =
∞∑
n=1

x−sn =
(
π

L

)−2s

ζR(2s). (2.24)

Concerning the remaining parts of the circuitC, for the arc of radiusε the result
of integrating z−s−1 ln[fL(z)/AL(z)] over this part, whenε → 0, amounts to bounded
quantities timesε−s or ε−s ln ε. Therefore, fors = −1/2 one can ignore this piece of the
circuit. As for the arc of radiusR→∞, by (2.16), we may also throw away this part when
s = −1/2.

Thus, forx ∈ (0,∞), having already taken the limitsε→ 0 andR→∞, we obtain

ζλ(s) = − s

2π i
2i Im

{
e−iπs/3

∫ ∞
0

dx x−s−1 ln[LL(x)]
}
+
(
π

L

)−2s

ζR(2s)

= − s
π

Im

{
e−iπs/3

[
JL(s)−

L̃2

4
B

(
− s

2
,
s + 1/2

2

)]}
+
(
π

L

)−2s

ζR(2s)

= − s
π

[
JL(s)+

L
2

4
sin

(
π

3
(s + 2)

)
B

(
− s

2
,
s + 1/2

2

)]
+
(
π

L

)−2s

ζR(2s)

(2.25)
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where the term

JL(s) ≡ Im [e−iπs/3JL(s)]

=
∫ ∞

0
dx x−s−1

{
Im[e−iπs/3LL(x)] −

L
2

2
sin

(
π

3
(s + 2)

)
1

(1+ x2)1/4

}
(2.26)

is also a finite integral ats = −1/2. Laurent expanding (2.25) arounds = −1/2,

ζλ(s) = L
2

4π

1

s + 1
2

+ 1

2π

[
− L

2

4

(
γ + ψ

(
− 1

4

))
+ JL

(
− 1

2

)]
− π

12L
+O

(
s + 1

2

)
(2.27)

and, after applying (2.12), it is immediate that

EC

E1/3
(µ;L) = −L

2

8π
ln

(
µ

E1/3

)
+ pL

pL ≡ −
π

24

1

L
+ 1

4π

[
− L

2

4

(
γ + ψ

(
− 1

4

))
+ JL

(
− 1

2

)]
.

(2.28)

One can easily see that aroundL = 0 the main contribution comes from the term−π/24L.
In fact, whenE = 0 (L = 0) the energy becomes−π/24L, which is s-finite and coincides
with the known value in absence of external field (see, e.g., [2, 3]†).

By numerical evaluation of the integral (2.26) ats = −1/2, and setting the arbitrary
mass scale atµ = E1/3, we find the finite parts ofLEC(µ = E1/3;L) = LpL for different
values ofL. The results of our calculation are listed in table 1. Note the presence of a
local minimum aroundL = 0.3. AsL is further raised, thisLEC increases and eventually
becomes positive. Yet attributing physical meaning to such facts would be difficult, as
these values are scale dependent and not completely unambiguous. In order to grasp their
importance in numerical terms, let us imagine thatV (x) = αmgx with m, g andx denoting
mass, gravity acceleration on the Earth surface and height, respectively, in m.k.s. units.
Then, for dimensional reasons, by looking at the original equation written in this unit system
we realize that the couplingα must have the same dimensions asMp/h̄

2, withMp the Planck
mass. This coupling then becomes completely determined up to a dimensionless constant
which we make equal to one unit; thenα = Mp/h̄

2, and we find that form = 10−30 kg
(close to the electron mass) the valueL = 0.5 meansL = 1.9 × 10−11 m. In such
circumstances, the change inLEC with respect to the case without external field amounts
to 3%, approximately.

Table 1. Numerical values ofLEC in terms of the dimensionless variableL.

L LEC(µ = E1/3;L)
0 −π/24' −0.131
0.1 −0.134
0.2 −0.136
0.3 −0.137
0.4 −0.136
0.5 −0.135

† In [2] the expression corresponding to this result has to be corrected.
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2.2. Case of Dirichlet boundary conditions at x = 0 and x→∞
Here we shall consider the limitL→∞ while keepingL > λ. We thus writeL−λ ≡ u > 0.
The boundary condition, atx →∞ (y →∞ with positive values) lead one to consider the
identity

Jν(
2
3(−u)3/2) = ei3πν/2Iν(

2
3u

3/2) (2.29)

and then

c1J1/3

(
2

3
(−u)3/2

)
+ c2J−1/3

(
2

3
(−u)3/2

)
= c1 eiπ/2I1/3

(
2

3
u3/2

)
+c2 e−iπ/2I−1/3

(
2

3
u3/2

)
∼ i(c1−c2)

1√
2π 2

3u
3/2

e
2
3u

3/2
.

(2.30)

Since this must vanish, the relation

c2 = c1 (2.31)

is now needed, and the vanishing condition ofφ at x = 0 (y = −λ) becomes, by (2.6),

J1/3(
2
3λ

3/2)+ J−1/3(
2
3λ

3/2) = 0. (2.32)

Equivalently, the eigenmodes correspond to the zeros of

f∞(λ) =
J1/3(

2
3λ

3/2)

J−1/3(
2
3λ

3/2)
+ 1. (2.33)

On the pathλ = eiπ/3x,

f∞(eiπ/3x) = eiπ/3 I1/3(
2
3x

3/2)

I−1/3(
2
3x

3/2)
+ 1 (2.34)

which, for x →∞, has a dominant contribution given by a constant, namely

A∞ = eiπ/3+ 1. (2.35)

The energy here will be the result of applying (2.14) with the sameC, and f∞ and
A∞ instead offL andAL. Note that, sinceA∞ has no zeros, the second integral now
gives no contribution. Next-to-leading terms cause no problem in the sense that, unlike
expression (2.21), the asymptotic expansion of

ln[L∞(x)] ≡ ln

[
f∞(eiπ/3x)

A∞

]
contains no term∼x−1/2, and it is enough to numerically calculate (for reals)

ζλ(s) = − s
π

Im

{
e−iπs/3

∫ ∞
0

dx x−s−1 ln[L∞(x)]
}
. (2.36)

After numerical evaluation of the integral ats = −1/2, we use (2.12) and find

EC = −0.088 346E1/3. (2.37)

The above finite figure comes as a surprise in view of the divergent nature of the finite-L

results. In other words, this value ofEC cannot be obtained as the limit of the finite-L

outcome whenL goes to infinity. This is so because the imposition of the boundary condition
at infinity in the above-described way is actually a qualitatively different situation. In the
finite-L case there is room for ‘external’ modes propagating in the regionL 6 x <∞ which
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were not included because we were assuming our field modes ‘confined’ in the 06 x 6 L
region. In contrast, the infinite-L case leaves no room for these external modes. Considering
analogous discussions for the Casimir effect in higher (odd) dimensions, it is conceivable
that the inclusion of external modes might lead to the cancellation of thes-singularities and
the appearance of (2.37) as a continuous limit of finite values. The proof of this conjecture
is out of the scope of the present work.

Next, let us compare the figure found with the result of an approximate calculation. By
a ‘WKB-style’ approximation, we write

Jν(x)+ J−ν(x) ∼ 2 cos

(
πν

2

)√
2

πx
cos

(
x − π

4

)
(2.38)

whose zeros arexn = (n+ 3
4)π , n = 0, 1, 2, . . . . Therefore, in terms ofλ

λWKB
n = [ 3

2(n+ 3
4)π ]2/3 (2.39)

and

ζWKB
λ (s) = ( 3

2π)
−2s/3ζH (s,

3
4). (2.40)

Evaluating the energy ats = −1/2 we find

EWKB
C = 1

2ζ
WKB
λ (− 1

2)E
1/3 = 1

2(
3
2πE)

1/3ζH (− 1
3,

3
4) = −0.075 0921E1/3 (2.41)

which is not too different from (2.37). The fact that a WKB-fashion approximation is fairly
good forD = 1 seems to be in accordance with the ideas of [7], which shows a case where
the approximation worsens asD increases.

3. Charged scalar in an external electric field

A charged scalar in an external electric field was the situation considered in [1] and, by way
of comparison, we shall sketch here the changes that take place. The evolution equation
(for the massless case) is

D28(t, x) = 0. (3.1)

Here we have covariant derivativesDµ = ∂µ + iqAµ, whereq is the charge andA the
electromagnetic potential for the external field. In view of the type of field supposed,
we takeA1 = 0 andA0 = Ex + constant. E denotes the value of our uniform field.
The Dirichlet boundary condition will eventually be imposed atx = 0 and x = L.
To make our expressions similar to those in the above quoted reference, we choose the
constant= −EL/2. As usual, we write8(t, x) = e−iωtφ(x). Then, in terms of the new
dimensionless variablesu ≡ x/L, L ≡ qEL2 andw ≡ Lω, the field equation reads[

d2

du2
+
(
L

(
u− 1

2

)
+ w

)2]
φ = 0. (3.2)

Its general solution is a linear combination

φ = y1/2

[
c1J1/4

(
y2

2L

)
+ c2J−1/4

(
y2

2L

)]
y ≡ L

(
u− 1

2

)
+ w. (3.3)

When imposing the Dirichlet boundary condition atx = 0, a (u = 0, 1), one realizes that
the eigenfrequencies will be given by the solutions of

fL(w) ≡
J1/4((1/2L)(w − (L/2))2)
J−1/4((1/2L)(w − (L/2))2)

− J1/4((1/2L)(w + (L/2))2)
J−1/4((1/2L)(w + (L/2))2)

= 0. (3.4)
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As an integration contour, we take the sameC as in the previous problem but with a semi-
angle ofπ/4 instead ofπ/3, which proves to be more convenient for the present type of
integrand. The study offL on the upper straight track leads to the consideration of an
asymptotic form forfL(e

iπ/4x) for x large. The one we adopt is

AL(e
iπ/4x) ≡

√
2 eiπ/4

{
exp

[
− 1

L

(
x + e−iπ/4L

2

)2]
− exp

[
− 1

L

(
x − e−iπ/4L

2

)]2}
(3.5)

which is regarded as a particular case of the complex function

AL(z) ≡
√

2 eiπ/4[ei(z+L/2)2/L − ei(z−L/2)2/L] (3.6)

asymptotically mimickingfL(z) for large |z|. This function has real zeros—contributing
to the second integral in (2.14)—which arexn = πn, n = 1, 2, 3,. . .. Taking all these
elements into account, we find

ζw(s) = − s
π
JL(s)+ π−sζR(s) (3.7)

where

JL(s) = Im

{
e−iπs/4

∫ ∞
0

dx x−s−1 ln[LL(x)]
}

ln[LL(x)] ≡ ln

[
fL(e

iπ/4x)

AL(eiπ/4x)

]
. (3.8)

Settings = −1 and adequately re-introducing the quantities with dimensions, we obtain the
Casimir energy

EC = 2
1

2L
ζw(−1) = 1

L

[
− π

12
+ 1

π
JL(−1)

]
. (3.9)

Since the space-dependent part of the field (φ(x)) is now necessarily complex, an extra
factor of two has been introduced. While the first term is the known result in the absence
of external field, the integralJL(−1), which is finite and gives the new contribution due
to L, has to be numerically evaluated for everyL. The results are given in table 2. The
m.k.s. form of the initial equation leads to the relationL = (1/h̄c)qEL2. Then, takingq as
the electron charge andL = 10−7 m, we see that atL = 0.5 the field intensityE is close
to 107(N/C). In such conditions,LEC is 46% larger than in the absence of electric field.
This is obviously a very appreciable effect from the experimental point of view.

Table 2. Numerical values ofLEC as a function of the dimensionless variableL.

L LEC(L)

0 −π/12' −0.262
0.1 −0.312
0.2 −0.334
0.3 −0.352
0.4 −0.368
0.5 −0.382

Soft-boundary ‘potentials’, quadratic in the positionV (x) ∝∑i α
4
i x

2
i , were studied in

[12], where other ways of ‘hardening’ the endpoints were also considered. Up to a shift
in the origin, the wave equations with theV (x)-terms have essentially the same form as
equation (3.2) above. Our figures are in agreement with the facts, noted in [12], that the
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Casimir effect is attractive (minus sign in the above results) and that the energy is further
decreased as the value of the ‘coupling’ (L, or αi) is increased.

The case where the Dirichlet boundary conditions are set atx = 0 andx →∞ may be
dealt with by a method analogous to the one employed in the previous problem. The final
result is

EC =
√
qE

1

π
Im

{
eiπ/4

∫ ∞
0

dx ln

[
eiπ/4(I1/4(x

2/2)/I−1/4(x
2/2))+ 1

eiπ/4+ 1

]}
= −0.160 314

√
qE. (3.10)

4. Conclusions

Some precise ideas follow from this study. The general conclusion that apparently simple
situations can become so mathematically involved (compelling us to be very meticulous at
every slippery step) has found its compensation in the reassuring feeling that the zeta-
function method, conveniently supplied with complex analytical techniques, is a very
powerful tool to deal with such problems.

The second idea comes from the numerical results themselves. Forgetting for a second
that the spacetime models considered here are two-dimensional, we would conclude that an
experimental verification of these theories stays within the reach of present or near-future
settings. And this, we feel, is quite a respectable goal, since a clear understanding of the
concept of zero-point energy is of fundamental importance and a necessary clue for the
adequate comprehension of the quantum field theories themselves.

There are two tasks to be approached next. On the one hand, supported by the present
two-dimensional results, the physical situation of four spacetime dimensions ought to be
investigated. On the other hand, the standpoint of the semiclassical model adopted here
for the gravitational case (an example, in fact, of the general class of semihard boundary
conditions) should be substantially improved in order to approach a more realistic (and
computationally demanding) quantum gravity approximation.
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